Alıştırma: İfade Değerlendirmesi
Let's write a simple recursive evaluator for arithmetic expressions.
An example of a small arithmetic expression could be 10 + 20
, which evaluates to 30
. We can represent the expression as a tree:
A bigger and more complex expression would be (10 * 9) + ((3 - 4) * 5)
, which evaluate to 85
. We represent this as a much bigger tree:
In code, we will represent the tree with two types:
#![allow(unused)] fn main() { /// An operation to perform on two subexpressions. #[derive(Debug)] enum Operation { Add, Sub, Mul, Div, } /// An expression, in tree form. #[derive(Debug)] enum Expression { /// An operation on two subexpressions. Op { op: Operation, left: Box<Expression>, right: Box<Expression> }, /// A literal value Value(i64), } }
The Box
type here is a smart pointer, and will be covered in detail later in the course. An expression can be "boxed" with Box::new
as seen in the tests. To evaluate a boxed expression, use the deref operator (*
) to "unbox" it: eval(*boxed_expr)
.
Some expressions cannot be evaluated and will return an error. The standard Result<Value, String>
type is an enum that represents either a successful value (Ok(Value)
) or an error (Err(String)
). We will cover this type in detail later.
Copy and paste the code into the Rust playground, and begin implementing eval
. The final product should pass the tests. It may be helpful to use todo!()
and get the tests to pass one-by-one. You can also skip a test temporarily with #[ignore]
:
#[test]
#[ignore]
fn test_value() { .. }
#![allow(unused)] fn main() { /// An operation to perform on two subexpressions. #[derive(Debug)] enum Operation { Add, Sub, Mul, Div, } /// An expression, in tree form. #[derive(Debug)] enum Expression { /// An operation on two subexpressions. Op { op: Operation, left: Box<Expression>, right: Box<Expression> }, /// A literal value Value(i64), } fn eval(e: Expression) -> Result<i64, String> { todo!() } #[test] fn test_value() { assert_eq!(eval(Expression::Value(19)), Ok(19)); } #[test] fn test_sum() { assert_eq!( eval(Expression::Op { op: Operation::Add, left: Box::new(Expression::Value(10)), right: Box::new(Expression::Value(20)), }), Ok(30) ); } #[test] fn test_recursion() { let term1 = Expression::Op { op: Operation::Mul, left: Box::new(Expression::Value(10)), right: Box::new(Expression::Value(9)), }; let term2 = Expression::Op { op: Operation::Mul, left: Box::new(Expression::Op { op: Operation::Sub, left: Box::new(Expression::Value(3)), right: Box::new(Expression::Value(4)), }), right: Box::new(Expression::Value(5)), }; assert_eq!( eval(Expression::Op { op: Operation::Add, left: Box::new(term1), right: Box::new(term2), }), Ok(85) ); } #[test] fn test_zeros() { assert_eq!( eval(Expression::Op { op: Operation::Add, left: Box::new(Expression::Value(0)), right: Box::new(Expression::Value(0)) }), Ok(0) ); assert_eq!( eval(Expression::Op { op: Operation::Mul, left: Box::new(Expression::Value(0)), right: Box::new(Expression::Value(0)) }), Ok(0) ); assert_eq!( eval(Expression::Op { op: Operation::Sub, left: Box::new(Expression::Value(0)), right: Box::new(Expression::Value(0)) }), Ok(0) ); } #[test] fn test_error() { assert_eq!( eval(Expression::Op { op: Operation::Div, left: Box::new(Expression::Value(99)), right: Box::new(Expression::Value(0)), }), Err(String::from("division by zero")) ); } }